ÀÌ´ÞÀÇ °ü½É³í¹®

ÀÌÀç¹ü (ºÎ»ê´ëÇб³ ±³¼ö)

  • 1. Title

    J. Lee, et al., “Small molecule induced self-assembly of Au nanoparticles”Journal of Materials Chemistry, VOL. 21, 16935-16942, Feb 2011.

     

    ºÎ»ê´ëÇб³ LEELAB¿¬±¸¿øµé°ú WCU¼®Çб³¼ö Kotov±³¼ö(¹Ì½Ã°£´ë)¿Í Áß±¹ ¿ºÁö ¿öÅ©»ð

     


    2. Abstract
    Interest in one dimensional assemblies of metallic nanomaterials, particularly Au nanoparticles (NPs), has grown due to the optical properties and various applications of NPs in optoelectronics, biosensors, and nano-electronics. In general, one-dimensional alignments of Au nanostructures have been accomplished by using soft or hard templates, such as polymers, DNA, anodized aluminum oxide or even molecular templates. However, difficulties of nanoscale control and remnant byproducts through unwanted chemical reactions have become a limitation. In this paper, a no-template assembly was successfully carried out to produce one dimensional nanochains of Au NPs through N-ethyl-N′-(dimethylaminopropyl) carbodiimide (EDC) chemistry, where carboxylates on the surface of Au NPs are activated by EDC at room temperature. EDC is a fascinating candidate for nanomaterials assembly due to its easily chemical-activating ability as well as well-known biocompatibility. Physiochemical properties of the nanochains were characterized by TEM, AFM, UV/Vis, and FT-IR spectrophotometers, as well as zeta potential. Molecular dynamics (MD) simulations were also carried out in order to reveal the structuring mechanisms of the chains. Experimental and computational results indicate that the strong interaction between citrate-EDC-citrate and Au NPs was related to van der Waals forces and the Coulomb force of the functional groups, inducing delicate manipulation of the main bonding energy for self-assembly those NPs.

     


    3. ³í¹® ±â¿©»çÇ× (Contributions)
    ³ª³ëºÐ¾ßÀÇ °¡Àå Å« °ü½É°Å¸®Áß Çϳª´Â ¾î¶»°Ô ³ª³ë¹°ÁúÀ» È¿°úÀûÀ¸·Î Á¦¾îÇÒ °ÍÀΰ¡ ÀÔ´Ï´Ù. Á¦¾îÇÏ´Â ¹æ¹ýÀº ¿©·¯°¡Áö°¡ ÀÖ°ÚÁö¸¸, Å©°Ô µÎ°¡Áö·Î ³ª´­¼ö ÀÖ½À´Ï´Ù. Áï, ¿ÜºÎ¿¡¼­ Èû(¿¡³ÊÁö)¸¦ ÁÖ¾î °­Á¦·Î Á¦¾îÇÏ°Ô ÇÏ´Â ¹æ¹ý°ú ³»ºÎ¿¡¼­ ³ª³ëÀÔÀÚ ÀÚü¿¡¼­ »ý±ä ¾ÆÁÖ ÀÛÀº ¿¡³ÊÁö¸¦ ½º½º·Î Á¦¾îÇÏ°Ô ÇÏ´Â ¹æ¹ýÀÔ´Ï´Ù. ÀÚ¿¬¹ß»ýÀûÀ¸·Î ¸¸µé¾îÁø ´ëºÎºÐÀÇ ¹°Áúµé, ƯÈ÷, DNA, ´Ü¹éÁú µî°ú °°Àº ¼Ò±Ô¸ðÀÇ ¹ÙÀÌ¿À¹°ÁúµéÀº ÀÌ ¹æ¹ý¿¡ ÀÇÇؼ­ ¸¸µé¾îÁø °ÍÀÔ´Ï´Ù. ¹ÙÀÌ¿À¿¡¼­ ¾òÀº Áö½ÄÀ» ÀÌ¿ëÇؼ­ ³ª³ëÀÔÀÚ¸¦ È¿°úÀûÀ¸·Î Á¦¾îÇÏ´Â ¹æ¹ýÀ» »ýü¸ð»ç ÀÚ°¡Á¶¸³¹ý (bio-mimic self-assembly)¶ó°í ÇÕ´Ï´Ù. º» ³í¹®Àº ³ª³ëÀÔÀÚÁß °¡Àå ¸¹ÀÌ »ç¿ëµÇ´Â ±Ý³ª³ëÀÔÀÚ¸¦ ºÐÀÚ ÇÑ Á¾À» ÀÌ¿ëÇØ ¸·´ë¸ð¾çÀ¸·Î ¿¬°áÇÏ´Â ¹æ¹ýÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ´ÜÀÏ ±ÝÀÔÀÚ°¡ ¸·´ë¸ð¾çÀ¸·Î ¿¬°áµÇ¸é ÀåÆÄÀå (>600nm)¿¡¼­ ¸Å¿ì ¿ì¼öÇÑ Èí±¤À» ÀÏÀ¸Å°´Â ±âÀÌÇÑ ºÐ±¤ÇÐÀû Ư¡À» º¸ÀÔ´Ï´Ù. À̸¦ ÀÌ¿ëÇÑ ´Ù¾çÇÑ ¼¾¼­ ¹× À̹Ì¡ µð¹ÙÀ̽ºÀÇ ÀÀ¿ëÀÌ °¡´ÉÇÕ´Ï´Ù. ƯÈ÷, »ç¿ëµÈ ºÐÀÚ´Â ÀÌ¹Ì ¾î¼Àºí¸®¿¡¼­ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ°í »ý¹°ÇÐÀû ¾ÈÁ¤¼ºÀÌ ÀÔÁõµÈ ¹°ÁúÀ» »ç¿ëÇÏ¿©, ¸·´ë¸ð¾çÀÇ ¹°ÁúÀÌ in- vivo ¹ÙÀÌ¿À Àç·á·Îµµ »ç¿ëµÉ ¼ö ÀÖµµ·Ï °í¾ÈÇÏ¿´½À´Ï´Ù. ÇöÀç À̸¦ ÀÌ¿ëÇÑ, SERS, Plasmonics, SPR devicesÀÇ ÀÀ¿ë¿¡ ´ëÇÑ ´Ù¾çÇÑ Ãß°¡½ÇÇèÀ» ÇÏ°í ÀÖ½À´Ï´Ù. 


    ¡á ÀÌÁ¦¹ü ±³¼ö ¼Ò°³

     

    ÀÌÁ¦¹ü ±³¼ö´Â 1998³â Ãæ³²´ë¿¡¼­ È­Çаú Çлç, 2003³â Robert Gordon University, Aberdeen (Scotland)¿¡¼­ ¹Ú»çÇÐÀ§¸¦ ÃëµæÇÏ¿´°í, U. Michigan, Ann Arbor, È­ÇаøÇаú¿¡¼­ Post-DocÈÄ, 2007³â ºÎ»ê´ëÇб³ ³ª³ëÀÀ¿ë°øÇаú¿¡ ºÎÀÓÇÏ¿´´Ù. 

    ÀÌÀç¹ü ±³¼ö´Â ³ª³ëÀÔÀÚ ÇÕ¼º ¹× Á¦¾î, ¹ÙÀÌ¿À¼¾¼­ ºÐ¾ß¿¡¼­ Áö³­ 5³âµ¿¾È 70 ¿©ÆíÀÇ ±¹Á¦Çмú³í¹®À» °ÔÀçÇÏ¿´°í Ãâ°£µÈ ³í¹®µéÀº 1,300 ¿©È¸ ÀοëµÇ¾ú´Ù. ³ª³ëÀÔÀÚÀÇ Ç¥¸éÇöóÁî¸ó°ø¸í Çö»ó¿¡ ±â¹ÝÀ» µÐ ±ØÃʹ̷® ¹ÙÀÌ¿À¼¾½Ì ¹× ³ª³ëÃʱ¸Á¶Ã¼ (nanoscale supramaterials) ÇÕ¼º¿¡ °ü½ÉÀ» °®°í ÀÖÀ¸¸ç, ÃÖ±Ù¿¡´Â À̸¦ È°¿ëÇÑ, ¼ö»ê¹° Á¾¹× ¿ø»êÁö Æò°¡, °áÇÙȯÀÚ Áø´Ü¼¾¼­ ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀ» Ãß±¸ÇÏ°í ÀÖ´Ù.